Damage Control Resuscitation in Prehospital and Austere Environments

Michael J. Lauria, MD, NRP, FP-C Associate Professor Dept of Emergency Medicine, Sections of Critical Care and EMS University of Washington Associate Medical Director and Flight Physician Airlift Northwest

Disclosure and Disclaimer

Overview

Case

The Triad (or the Diamond?): What We're Up Against

Prehospital Damage Control

Patient Presentation

- 22 year old male, dismounted patrol
- RPG impact near by
- Shrapnel wounds to LLE, groin area, and lower abdomen
- TQ on LLE, on a litter, mylar blanket

Vital Signs

BP - 82/40 RR - 22 HR - 142 CAO x 4, but in pain

THE OLD WAY

20 - 30+ cc/kg crystalloid bolus Oxygen, monitor, rush to hospital/CSH Additional crystalloid during initial stabilization Patient tailored approach to resuscitation **Definitive surgical care**

ADVANCES IN TRAUMA CARE FROM OEF/OIF

A New Trauma Paradigm

What we are up against...

Hypothermia

Coagulopathy

LETHAL DIAMOND – the Role of Ca²⁺

Ditzel RM, et al. A review of transfusion- and trauma-induced hypocalcemia: Is it time to change the lethal triad to the lethal diamond? *J Trauma Acute Care Surg.* 2020.

Damage Control Resuscitation

Damage Control Resuscitation

HEMOSTATIC RESUSCITATION TARGETED HEMODYNAMICS TRANSFUSION **PHARMACOLOGIC ADJUNCTS**

Hemostatic Resuscitation

Aggressive hemorrhage control

Tourniquets

Time?

How tight?

Proximal Placement

Wound packing

COMBAT GAUZE

REF 375

Control Traumatic Bleed Control Traumatic Bleed Cuum Packed and Z-Foled Cuum Packed and Z-Foled

Z-MEDICA

It's not such much WHAT you pack it with, but HOW you pack the wound...

Pelvic binder application

REBOA Survival

GROA

Intra-abdominal Foam

Targeted Hemodynamics

Minimum Normotension
Civilian Evidence

Cannon et al. JAMA 1918; 618-621 Bickell *et al. N Engl J Med* 1994; 331: 1105-1109 Dutton RP *et al. J Trauma* 2002; 52(6): 1141-1146

Systolic BP of 100 +/-(110 if TBI, 90 if no blood)

MAP of 65 - 70

Shock Index

Heart Rate/SBP

Shock Index > 1.0

= BAD

Healthy 34 y/o male GSW to the abdomen HR: 144 BP: 104/80

Shock Index = 1.4

Transfusion

BE WEITH HILL

Early, empiric administration of blood products

Replace Blood with Blood

Blood ≠

Red Cells

Plasma

+

Platelets

1:1:1

ANNALS of SURGERY

VOL. LXVII

JANUARY, 1918

No. 1

FURTHER OBSERVATIONS ON THE RESULTS OF BLOOD TRANSFUSION IN WAR SURGERY

WITH SPECIAL REFERENCE TO THE RESULTS IN PRIMARY HEMORRHAGE

BY L. BRUCE ROBERTSON, M.B. (TORONTO), MAJOR C.A.M.C.

WITH A NOTE BY COL. C. GORDON WATSON, C.M.G., F.R.C.S., A.M.S. CONSULTING SURGEON, B. E. F. THE TRANSFUSION OF WHOLE BLOOD: *A SUGGESTION FOR ITS MORE FREQUENT*

EMPLOYMENT IN WAR SURGERY.

BY

L. BRUCE ROBERTSON, B.A., M.B.TORONTO,

CAPTAIN C.A.M.C., JUNIOB ASSISTANT SURGEON, HOSPITAL FOR SICK CHILDREN, TORONTO, CANADA.

"Transfusion of blood after primary hemorrhage is a lifesaving intervention of the greatest value and enables urgent operations to be successfully performed under conditions otherwise hopeless."

Original Investigation

Transfusion of Plasma, Platelets, and Red Blood Cells in a 1:1:1 vs a 1:1:2 Ratio and Mortality in Patients With Severe Trauma The PROPPR Randomized Clinical Trial

John B. Holcomb, MD; Barbara C. Tilley, PhD; Sarah Baraniuk, PhD; Erin E. Fox, PhD; Charles E. Wade, PhD; Jeanette M. Podbielski, RN; Deborah J. del Junco, PhD; Karen J. Brasel, MD, MPH; Eileen M. Bulger, MD; Rachael A. Callcut, MD, MSPH; Mitchell Jay Cohen, MD; Bryan A. Cotton, MD, MPH; Timothy C. Fabian, MD; Kenji Inaba, MD; Jeffrey D. Kerby, MD, PhD; Peter Muskat, MD; Terence O'Keeffe, MBChB, MSPH; Sandro Rizoli, MD, PhD; Bryce R. H. Robinson, MD; Thomas M. Scalea, MD; Martin A. Schreiber, MS; Deborah M. Stein, MD; Jordan A. Weinberg, MD; Jeannie L. Callum, MD; John R. Hess, MD, MPH; Nena Matijevic, PhD; Christopher N. Miller, MD; Jean-Francois Pittet, MD; David B. Hoyt, MD; Gail D. Pearson, MD, ScD; Brian Leroux, PhD; Gerald van Belle, PhD; for the PROPPR Study Group

PAMPer Trial

Cox proportional hazards regression adjusted survival curves based on prehospital resuscitation group. T me of randomization in the original trial. PRBC indicates packed red blood cells.

RBCs + plasma vs Standard Care

B	pRBCs + pl	asma	standard	care		Odds Ratio	Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	I M-H, Random, 95% CI		
2.1.1 Retrospective m	natched cohor	t							
O'reilly et al (61)	8	97	19	97	15.2%	0.37 [0.15, 0.89]			
Shackelford et al (52)	6	54	76	332	15.0%	0.42 [0.17, 1.02]			
Holcomb et al (53)	8	43	14	66	12.6%	0.85 [0.32, 2.24]			
Subtotal (95% CI)		194		495	42.8%	0.49 [0.29, 0.83]	\bullet		
Total events	22		109						
Heterogeneity: Tau ² = 0.00; Chi ² = 1.75, df = 2 (P = 0.42); l ² = 0%									
Test for overall effect:	Z = 2.64 (P = 0	.008)							
2.1.2 Randomised tria	al								
Sperry et al (64)	40	170	76	203	57.2%	0.51 [0.33, 0.81]			
Subtotal (95% CI)		170		203	57.2%	0.51 [0.33, 0.81]	◆		
Total events	40		76						
Heterogeneity: Not app	olicable								
Test for overall effect:	Z = 2.87 (P = 0	.004)							
Total (95% CI)		364		698	100.0%	0.51 [0.36, 0.71]	•		
Total events	62		185						
Heterogeneity: Tau ² =	0.00; Chi ² = 1.7	76, df = 3	3 (P = 0.62); l² = 09	6				
Test for overall effect: Z = 3.89 (P < 0.0001)							Eavours pRBCs + plasma Eavours standard care		
Test for subgroup diffe	rences: Chi ² =	0.01, df	= 1 (P = 0.	91), l² =	0%				

On the military side...

Warm Fresh Whole Blood Is Independently Associated With Improved Survival for Patients With Combat-Related Traumatic Injuries

Philip C. Spinella, MD, Jeremy G. Perkins, MD, Kurt W. Grathwohl, MD, Alec C. Beekley, MD, and John B. Holcomb, MD

Fresh whole blood use by forward surgical teams in Afghanistan is associated with improved survival compared to component therapy without platelets

Shawn C. Nessen, Brian J. Eastridge, Daniel Cronk, Robert M. Craig, Olle Berséus, Richard Ellison, Kyle Remick, Jason Seery, Avani Shah, and Philip C. Spinella

On the civilian side?

SUPPLEMENT ARTICLE

TRANSFUSION

Prehospital whole blood reduces early mortality in patients with hemorrhagic shock

Maxwell A. Braverman¹ | Alison Smith¹ | Douglas Pokorny¹ | Benjamin Axtman¹ | Charles Patrick Shahan¹ | Lauran Barry¹ | Hannah Corral¹ | Rachelle Babbitt Jonas¹ | Michael Shiels² | Randall Schaefer³ | Eric Epley³ | Christopher Winckler⁴ | Elizabeth Waltman⁵ | Brian J. Eastridge¹ | Susannah E. Nicholson¹ | Ronald M. Stewart¹ | Donald H. Jenkins¹

Resuscitation with blood products in patients with trauma-related haemorrhagic shock receiving prehospital care (RePHILL): a multicentre, open-label, randomised, controlled, phase 3 trial

Nicholas Crombie, Heidi A Doughty, Jonathan R B Bishop, Amisha Desai, Emily F Dixon, James M Hancox, Mike J Herbert, Caroline Leech, Simon J Lewis, Mark R Nash, David N Naumann, Gemma Slinn, Hazel Smith, Iain M Smith, Rebekah K Wale, Alastair Wilson, Natalie Ives, Gavin D Perkins, on behalf of the RePHILL collaborative group*

Adjunctive

100

Therapies

The impact of prehospital TXA on mortality among bleeding trauma patients: A systematic review and meta-analysis

Ateeq Almuwallad, MSc, Elaine Cole, PhD, Jennifer Ross, MSc, Zane Perkins, PhD, and Ross Davenport, PhD, United Kingdom

Figure 2. Forest plot of the effect (OR with 95% Cls) of prehospital TXA on 24-hour mortality.

Figure 3. Forest plot of the effect (OR with 95% Cls) of prehospital TXA on 28- to 30-day mortality.

THE MEDICAL JOURNAL

An Analysis of the Incidence of Hypocalcemia in Wartime Trauma Casualties

Mireya A. Escandon, BS Ashley D. Tapia, BS MAJ Andrew D. Fisher, MD, MPAS COL Stacy A. Shackelford, MD COL Vikhyat S. Bebarta, MD Franklin L. Wright, MD Susannah E. Nicholson, MD MAJ Ronnie Hill, MS James A. Bynum, PhD MAJ Steven G. Schauer, DO, MS

Table 1. Demographics, injury data, and outcome data.							
		No hypocalcemia n=70	Hypocalcemia n=72	p-value			
Demographics	Age	30 (25-31)	30 (30-33)	0.166			
	Male	100% (70)	100% (72)	N/A			
Affiliation	US military	17% (12)	16% (12)	0.072			
	NATO military	0% (0)	7% (5)				
	Non-NATO mil	52% (12)	17% (12)				
	Humanitarian	30% (21)	37% (27)				
Mechanism of	Explosive	51% (36)	45% (33)	0.473			
injury	Fall	4% (3)	1%(1)				
	Firearm	38% (27)	44% (32)				
	MVC	5% (4)	5% (4)				
	Other	0% (0)	3% (2)				
Injury Score	Composite	9 (2-19)	15 (5-25)	0.010			
Serious injuries	Head/neck	15% (11)	23%(17)	0.237			
by body region	Face	0% (0)	1%(1)	0.322			
	Thorax	11% (8)	15% (11)	0.623			
	Abdomen	14% (10)	23% (17)	0.200			
	Extremities	25% (18)	37% (27)	0.131			
	Skin	4% (3)	1%(1)	0.362			
Outcome	Alive	97% (68)	90% (65)	0.166			

Table 4. Comparison of select vital signs and scores.

	No hypocalcemia	Hypocalcemia	p-value				
Systolic pressure*	120.5 (115.8-125.2)	121.1 (116.6-125.6)	0.858				
Diastolic pressure*	75.7 (71.7-79.7)	75.5 (72.2-78.7)	0.933				
Heart rate*	100.5 (94.3-106.7)	102.5 (97.0-107.9)	0.632				
Pulse oximetry#	97 (96-99)	97 (94-100)	0.395				
Respiratory rate*	18.6 (17.7-19.6)	20.4 (18.9-21.9)	0.048				
Temperature*	97.8 (97.4-98.2)	97.9 (97.5-98.4)	0.731				
Glasgow Coma Scale#	15 (3-15)	15 (3-15)	0.639				
Shock index*	1.03 (0.96-1.10)	1.07 (1.02-1.13)	0.323				
Revised Trauma Score*	6.5 (6.1-7.0)	6.3 (5.9-6.7)	0.386				
*Presented as means, confidence of intervals, and t-test							

#Presented as means, confidence of intervals, and t-lest #Presented as median, interquartile range, and Wilcoxon test

AVERT-Shock: Vasopressin for Acute Hemorrhage?

Arginine vasopressin, but not epinephrine, improves survival in uncontrolled hemorrhagic shock after liver trauma in pigs*

Wolfgang G. Voelckel, MD; Claus Raedler, MD; Volker Wenzel, MD; Karl H. Lindner, MD; Anette C. Krismer, MD; Christian A. Schmittinger, DVM; Holger Herff, BS; Klaus Rheinberger, MS; Alfred Königsrainer, MD

Review Article

Vasopressin in Hemorrhagic Shock: A Systematic Review and Meta-Analysis of Randomized Animal Trials

Andrea Pasquale Cossu,¹ Paolo Mura,¹ Lorenzo Matteo De Giudici,¹ Daniela Puddu,¹ Laura Pasin,² Maurizio Evangelista,³ Theodoros Xanthos,⁴ Mario Musu,¹ and Gabriele Finco¹

Paradigm shift for initial resuscitation

Critical injury **DOES NOT** respect geography...
PREHOSPITAL CARE

PRESURGICAL CARE

Minimum Presurgical Goals

- Achieve hemostasis within scope of practice
- Provide definitive airway (adequate ventilation and oxygenation)
- Maintain normothermic patient (>96°F or 36°C)
- Obtain IV/IO access
- Provide fluid resuscitation as appropriate (with FWB or products)
- Maintain minimum normotension until definitive surgical care
- Administer prophylactic antibiotic therapy
- Record/communicate trends in physiologic parameters

Damage Control Resuscitation

Summary

Hemostatic Resuscitation Targeted Hemodynamics Transfusion Pharmacologic Adjuncts

QUESTIONS?